A flexible dual-mode pressure sensor with ultra-high sensitivity based on BTO@MWCNTs core-shell nanofibers

نویسندگان

چکیده

Wearable flexible sensors have developed rapidly in recent years because of their improved capacity to detect human motion wide-ranging situations. In order meet the requirements flexibility and low detection limits, a new pressure sensor was fabricated based on electrospun barium titanate/multi-wall carbon nanotubes (BTO@MWCNTs) core-shell nanofibers coated with styrene-ethylene-butene-styrene block copolymer (SEBS). The material (BTO@MWCNTs/SEBS) had SEBS BTO/MWCNTs mass ratio 20:1 exhibited an excellent piezoelectricity over wide range workable pressures from 1 50 kPa, higher output current 56.37 nA superior piezoresistivity broad working 20–110 kPa compression. also good durability repeatability under different long-term cyclic loading. These properties make composite ideal for applications requiring monitoring subtle changes (exhalation, pulse rate) finger movements. BTO@MWCNTs has demonstrated great potential be assembled into intelligent wearable devices. • A SEBS. 1–50 currentof 56.97 nA. capable sensing ultra-wide (1–110 kPa).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice

A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33-1.41. Numerical simulation resu...

متن کامل

Synthesize and Characterization of Hollow and Core/Shell Based on CeO2 as a Alcohol Sensor

In this study, CeO2 hollow spherical nanoparticles, CeO2/SiO2 @ CeO2 core/shell composites,and hollow CeO2/SiO2 sensors were synthesized and their microstructures were researched byFT-IR, XRD, FESEM, EDX and BET analyses. The peaks observed in the FT-IR spectra of the synthesizedsamples corresponded to Ce-O stretching vibration (ca. 566 cm-1) and O-Si-O bendingvibration (ca. 470 cm-1). XRD diff...

متن کامل

Dual Drug Release Electrospun Core-Shell Nanofibers with Tunable Dose in the Second Phase

This study reports a new type of drug-loaded core-shell nanofibers capable of providing dual controlled release with tunable dose in the second phase. The core-shell nanofibers were fabricated through a modified coaxial electrospinning using a Teflon-coated concentric spinneret. Poly(vinyl pyrrolidone) and ethyl cellulose were used as the shell and core polymer matrices respectively, and the co...

متن کامل

A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range

Pressure sensors are a key component in electronic skin (e-skin) sensing systems. Most reported resistive pressure sensors have a high sensitivity at low pressures (<5 kPa) to enable ultra-sensitive detection. However, the sensitivity drops significantly at high pressures (>5 kPa), which is inadequate for practical applications. For example, actions like a gentle touch and object manipulation h...

متن کامل

Modeling of capacitance and sensitivity of a MEMS pressure sensor

In this paper modeling of capacitance and sensitivity for MEMS capacitive pressure sensor is presented. In capacitive sensor the sensitivity is proportional to deflection and capacitance changes versus pressure. Therefore first the diaphragm displacement, capacitance and sensitivity of sensor with square diaphragm have been modeled and then simulated using finite element method (FEM).  It can b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Composites Science and Technology

سال: 2022

ISSN: ['2662-1827', '2662-1819']

DOI: https://doi.org/10.1016/j.compscitech.2022.109478